mirror of
https://github.com/simonw/datasette.git
synced 2025-12-10 16:51:24 +01:00
SQL syntax highlighting in docs
This commit is contained in:
parent
d69ebce533
commit
16398641d9
2 changed files with 39 additions and 13 deletions
|
|
@ -50,7 +50,9 @@ The packaged versions of SpatiaLite usually provide SpatiaLite 4.3.0a. For an ex
|
|||
Spatial indexing latitude/longitude columns
|
||||
===========================================
|
||||
|
||||
Here's a recipe for taking a table with existing latitude and longitude columns, adding a SpatiaLite POINT geometry column to that table, populating the new column and then populating a spatial index::
|
||||
Here's a recipe for taking a table with existing latitude and longitude columns, adding a SpatiaLite POINT geometry column to that table, populating the new column and then populating a spatial index:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import sqlite3
|
||||
conn = sqlite3.connect('museums.db')
|
||||
|
|
@ -75,7 +77,9 @@ Making use of a spatial index
|
|||
|
||||
SpatiaLite spatial indexes are R*Trees. They allow you to run efficient bounding box queries using a sub-select, with a similar pattern to that used for :ref:`full_text_search_custom_sql`.
|
||||
|
||||
In the above example, the resulting index will be called ``idx_museums_point_geom``. This takes the form of a SQLite virtual table. You can inspect its contents using the following query::
|
||||
In the above example, the resulting index will be called ``idx_museums_point_geom``. This takes the form of a SQLite virtual table. You can inspect its contents using the following query:
|
||||
|
||||
.. code-block:: sql
|
||||
|
||||
select * from idx_museums_point_geom limit 10;
|
||||
|
||||
|
|
@ -95,7 +99,9 @@ Here's a live example: `timezones-api.now.sh/timezones/idx_timezones_Geometry <h
|
|||
| 5 | 36.43336486816406 | 43.300174713134766 | 12.354820251464844 | 18.070993423461914 |
|
||||
+--------+----------------------+----------------------+---------------------+---------------------+
|
||||
|
||||
You can now construct efficient bounding box queries that will make use of the index like this::
|
||||
You can now construct efficient bounding box queries that will make use of the index like this:
|
||||
|
||||
.. code-block:: sql
|
||||
|
||||
select * from museums where museums.rowid in (
|
||||
SELECT pkid FROM idx_museums_point_geom
|
||||
|
|
@ -136,7 +142,9 @@ Exit out of ``spatialite`` (using ``Ctrl+D``) and run Datasette against your new
|
|||
|
||||
If you browse to ``http://localhost:8001/rivers-database/rivers`` you will see the new table... but the ``Geometry`` column will contain unreadable binary data (SpatiaLite uses `a custom format based on WKB <https://www.gaia-gis.it/gaia-sins/BLOB-Geometry.html>`_).
|
||||
|
||||
The easiest way to turn this into semi-readable data is to use the SpatiaLite ``AsGeoJSON`` function. Try the following using the SQL query interface at ``http://localhost:8001/rivers-database``::
|
||||
The easiest way to turn this into semi-readable data is to use the SpatiaLite ``AsGeoJSON`` function. Try the following using the SQL query interface at ``http://localhost:8001/rivers-database``:
|
||||
|
||||
.. code-block:: sql
|
||||
|
||||
select *, AsGeoJSON(Geometry) from rivers limit 10;
|
||||
|
||||
|
|
@ -148,7 +156,9 @@ To see a more interesting example, try ordering the records with the longest geo
|
|||
--load-extension=/usr/local/lib/mod_spatialite.dylib \
|
||||
--config sql_time_limit_ms:10000
|
||||
|
||||
Now try the following query::
|
||||
Now try the following query:
|
||||
|
||||
.. code-block:: sql
|
||||
|
||||
select *, AsGeoJSON(Geometry) from rivers
|
||||
order by length(Geometry) desc limit 10;
|
||||
|
|
@ -166,7 +176,9 @@ That page includes a link to the GeoJSON record, which can be accessed here:
|
|||
|
||||
`data.whosonfirst.org/404/227/475/404227475.geojson <https://data.whosonfirst.org/404/227/475/404227475.geojson>`_
|
||||
|
||||
Here's Python code to create a SQLite database, enable SpatiaLite, create a places table and then add a record for Wales::
|
||||
Here's Python code to create a SQLite database, enable SpatiaLite, create a places table and then add a record for Wales:
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
import sqlite3
|
||||
conn = sqlite3.connect('places.db')
|
||||
|
|
@ -196,7 +208,9 @@ Here's Python code to create a SQLite database, enable SpatiaLite, create a plac
|
|||
Querying polygons using within()
|
||||
================================
|
||||
|
||||
The ``within()`` SQL function can be used to check if a point is within a geometry::
|
||||
The ``within()`` SQL function can be used to check if a point is within a geometry:
|
||||
|
||||
.. code-block:: sql
|
||||
|
||||
select
|
||||
name
|
||||
|
|
@ -207,7 +221,9 @@ The ``within()`` SQL function can be used to check if a point is within a geomet
|
|||
|
||||
The ``GeomFromText()`` function takes a string of well-known text. Note that the order used here is ``longitude`` then ``latitude``.
|
||||
|
||||
To run that same ``within()`` query in a way that benefits from the spatial index, use the following::
|
||||
To run that same ``within()`` query in a way that benefits from the spatial index, use the following:
|
||||
|
||||
.. code-block:: sql
|
||||
|
||||
select
|
||||
name
|
||||
|
|
|
|||
Loading…
Add table
Add a link
Reference in a new issue