Split out new 'Writing plugins' page, refs #687

This commit is contained in:
Simon Willison 2020-06-21 19:37:48 -07:00
commit c32af6f693
4 changed files with 166 additions and 175 deletions

View file

@ -51,6 +51,7 @@ Contents
introspection
custom_templates
plugins
writing_plugins
plugin_hooks
internals
contributing

View file

@ -9,7 +9,7 @@ Each plugin can implement one or more hooks using the ``@hookimpl`` decorator ag
When you implement a plugin hook you can accept any or all of the parameters that are documented as being passed to that hook.
For example, you can implement the ``render_cell`` plugin hook like thiseven though the full documented hook signature is ``render_cell(value, column, table, database, datasette)``:
For example, you can implement the ``render_cell`` plugin hook like this even though the full documented hook signature is ``render_cell(value, column, table, database, datasette)``:
.. code-block:: python

View file

@ -33,53 +33,21 @@ Things you can do with plugins include:
Installing plugins
------------------
If a plugin has been packaged for distribution using setuptools you can use
the plugin by installing it alongside Datasette in the same virtual
environment or Docker container.
If a plugin has been packaged for distribution using setuptools you can use the plugin by installing it alongside Datasette in the same virtual environment or Docker container.
You can also define one-off per-project plugins by saving them as
``plugin_name.py`` functions in a ``plugins/`` folder and then passing that
folder to ``datasette serve``.
You can also define one-off per-project plugins by saving them as ``plugin_name.py`` functions in a ``plugins/`` folder and then passing that folder to ``datasette`` using the ``--plugins-dir`` option::
The ``datasette publish`` and ``datasette package`` commands both take an
optional ``--install`` argument. You can use this one or more times to tell
Datasette to ``pip install`` specific plugins as part of the process. You can
use the name of a package on PyPI or any of the other valid arguments to ``pip
install`` such as a URL to a ``.zip`` file::
datasette mydb.db --plugins-dir=plugins/
The ``datasette publish`` and ``datasette package`` commands both take an optional ``--install`` argument. You can use this one or more times to tell Datasette to ``pip install`` specific plugins as part of the process::
datasette publish cloudrun mydb.db --install=datasette-vega
You can use the name of a package on PyPI or any of the other valid arguments to ``pip install`` such as a URL to a ``.zip`` file::
datasette publish cloudrun mydb.db \
--install=datasette-plugin-demos \
--install=https://url-to-my-package.zip
.. _plugins_writing_one_off:
Writing one-off plugins
-----------------------
The easiest way to write a plugin is to create a ``my_plugin.py`` file and
drop it into your ``plugins/`` directory. Here is an example plugin, which
adds a new custom SQL function called ``hello_world()`` which takes no
arguments and returns the string ``Hello world!``.
.. code-block:: python
from datasette import hookimpl
@hookimpl
def prepare_connection(conn):
conn.create_function('hello_world', 0, lambda: 'Hello world!')
If you save this in ``plugins/my_plugin.py`` you can then start Datasette like
this::
datasette serve mydb.db --plugins-dir=plugins/
Now you can navigate to http://localhost:8001/mydb and run this SQL::
select hello_world();
To see the output of your plugin.
.. _plugins_installed:
Seeing what plugins are installed
@ -131,96 +99,6 @@ If you run ``datasette plugins --all`` it will include default plugins that ship
You can add the ``--plugins-dir=`` option to include any plugins found in that directory.
Packaging a plugin
------------------
Plugins can be packaged using Python setuptools. You can see an example of a
packaged plugin at https://github.com/simonw/datasette-plugin-demos
The example consists of two files: a ``setup.py`` file that defines the plugin:
.. code-block:: python
from setuptools import setup
VERSION = '0.1'
setup(
name='datasette-plugin-demos',
description='Examples of plugins for Datasette',
author='Simon Willison',
url='https://github.com/simonw/datasette-plugin-demos',
license='Apache License, Version 2.0',
version=VERSION,
py_modules=['datasette_plugin_demos'],
entry_points={
'datasette': [
'plugin_demos = datasette_plugin_demos'
]
},
install_requires=['datasette']
)
And a Python module file, ``datasette_plugin_demos.py``, that implements the
plugin:
.. code-block:: python
from datasette import hookimpl
import random
@hookimpl
def prepare_jinja2_environment(env):
env.filters['uppercase'] = lambda u: u.upper()
@hookimpl
def prepare_connection(conn):
conn.create_function('random_integer', 2, random.randint)
Having built a plugin in this way you can turn it into an installable package
using the following command::
python3 setup.py sdist
This will create a ``.tar.gz`` file in the ``dist/`` directory.
You can then install your new plugin into a Datasette virtual environment or
Docker container using ``pip``::
pip install datasette-plugin-demos-0.1.tar.gz
To learn how to upload your plugin to `PyPI <https://pypi.org/>`_ for use by
other people, read the PyPA guide to `Packaging and distributing projects
<https://packaging.python.org/tutorials/distributing-packages/>`_.
Static assets
-------------
If your plugin has a ``static/`` directory, Datasette will automatically
configure itself to serve those static assets from the following path::
/-/static-plugins/NAME_OF_PLUGIN_PACKAGE/yourfile.js
See `the datasette-plugin-demos repository <https://github.com/simonw/datasette-plugin-demos/tree/0ccf9e6189e923046047acd7878d1d19a2cccbb1>`_
for an example of how to create a package that includes a static folder.
Custom templates
----------------
If your plugin has a ``templates/`` directory, Datasette will attempt to load
templates from that directory before it uses its own default templates.
The priority order for template loading is:
* templates from the ``--template-dir`` argument, if specified
* templates from the ``templates/`` directory in any installed plugins
* default templates that ship with Datasette
See :ref:`customization` for more details on how to write custom templates,
including which filenames to use to customize which parts of the Datasette UI.
.. _plugins_configuration:
@ -288,47 +166,3 @@ If you are publishing your data using the :ref:`datasette publish <cli_publish>`
--install=datasette-auth-github \
--plugin-secret datasette-auth-github client_id your_client_id \
--plugin-secret datasette-auth-github client_secret your_client_secret
.. _plugins_plugin_config:
Writing plugins that accept configuration
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
When you are writing plugins, you can access plugin configuration like this using the ``datasette.plugin_config()`` method. If you know you need plugin configuration for a specific table, you can access it like this::
plugin_config = datasette.plugin_config(
"datasette-cluster-map", database="sf-trees", table="Street_Tree_List"
)
This will return the ``{"latitude_column": "lat", "longitude_column": "lng"}`` in the above example.
If it cannot find the requested configuration at the table layer, it will fall back to the database layer and then the root layer. For example, a user may have set the plugin configuration option like so::
{
"databases: {
"sf-trees": {
"plugins": {
"datasette-cluster-map": {
"latitude_column": "xlat",
"longitude_column": "xlng"
}
}
}
}
}
In this case, the above code would return that configuration for ANY table within the ``sf-trees`` database.
The plugin configuration could also be set at the top level of ``metadata.json``::
{
"title": "This is the top-level title in metadata.json",
"plugins": {
"datasette-cluster-map": {
"latitude_column": "xlat",
"longitude_column": "xlng"
}
}
}
Now that ``datasette-cluster-map`` plugin configuration will apply to every table in every database.

156
docs/writing_plugins.rst Normal file
View file

@ -0,0 +1,156 @@
.. _writing_plugins:
Writing plugins
===============
You can write one-off plugins that apply to just one Datasette instance, or you can write plugins which can be installed using ``pip`` and can be shipped to the Python Package Index (`PyPI <https://pypi.org/>`__) for other people to install.
.. _plugins_writing_one_off:
Writing one-off plugins
-----------------------
The easiest way to write a plugin is to create a ``my_plugin.py`` file and drop it into your ``plugins/`` directory. Here is an example plugin, which adds a new custom SQL function called ``hello_world()`` which takes no arguments and returns the string ``Hello world!``.
.. code-block:: python
from datasette import hookimpl
@hookimpl
def prepare_connection(conn):
conn.create_function('hello_world', 0, lambda: 'Hello world!')
If you save this in ``plugins/my_plugin.py`` you can then start Datasette like this::
datasette serve mydb.db --plugins-dir=plugins/
Now you can navigate to http://localhost:8001/mydb and run this SQL::
select hello_world();
To see the output of your plugin.
Packaging a plugin
------------------
Plugins can be packaged using Python setuptools. You can see an example of a packaged plugin at https://github.com/simonw/datasette-plugin-demos
The example consists of two files: a ``setup.py`` file that defines the plugin:
.. code-block:: python
from setuptools import setup
VERSION = '0.1'
setup(
name='datasette-plugin-demos',
description='Examples of plugins for Datasette',
author='Simon Willison',
url='https://github.com/simonw/datasette-plugin-demos',
license='Apache License, Version 2.0',
version=VERSION,
py_modules=['datasette_plugin_demos'],
entry_points={
'datasette': [
'plugin_demos = datasette_plugin_demos'
]
},
install_requires=['datasette']
)
And a Python module file, ``datasette_plugin_demos.py``, that implements the plugin:
.. code-block:: python
from datasette import hookimpl
import random
@hookimpl
def prepare_jinja2_environment(env):
env.filters['uppercase'] = lambda u: u.upper()
@hookimpl
def prepare_connection(conn):
conn.create_function('random_integer', 2, random.randint)
Having built a plugin in this way you can turn it into an installable package using the following command::
python3 setup.py sdist
This will create a ``.tar.gz`` file in the ``dist/`` directory.
You can then install your new plugin into a Datasette virtual environment or Docker container using ``pip``::
pip install datasette-plugin-demos-0.1.tar.gz
To learn how to upload your plugin to `PyPI <https://pypi.org/>`_ for use by other people, read the PyPA guide to `Packaging and distributing projects <https://packaging.python.org/tutorials/distributing-packages/>`_.
Static assets
-------------
If your plugin has a ``static/`` directory, Datasette will automatically configure itself to serve those static assets from the following path::
/-/static-plugins/NAME_OF_PLUGIN_PACKAGE/yourfile.js
See `the datasette-plugin-demos repository <https://github.com/simonw/datasette-plugin-demos/tree/0ccf9e6189e923046047acd7878d1d19a2cccbb1>`_ for an example of how to create a package that includes a static folder.
Custom templates
----------------
If your plugin has a ``templates/`` directory, Datasette will attempt to load templates from that directory before it uses its own default templates.
The priority order for template loading is:
* templates from the ``--template-dir`` argument, if specified
* templates from the ``templates/`` directory in any installed plugins
* default templates that ship with Datasette
See :ref:`customization` for more details on how to write custom templates, including which filenames to use to customize which parts of the Datasette UI.
.. _plugins_plugin_config:
Writing plugins that accept configuration
-----------------------------------------
When you are writing plugins, you can access plugin configuration like this using the ``datasette plugin_config()`` method. If you know you need plugin configuration for a specific table, you can access it like this::
plugin_config = datasette.plugin_config(
"datasette-cluster-map", database="sf-trees", table="Street_Tree_List"
)
This will return the ``{"latitude_column": "lat", "longitude_column": "lng"}`` in the above example.
If it cannot find the requested configuration at the table layer, it will fall back to the database layer and then the root layer. For example, a user may have set the plugin configuration option like so::
{
"databases: {
"sf-trees": {
"plugins": {
"datasette-cluster-map": {
"latitude_column": "xlat",
"longitude_column": "xlng"
}
}
}
}
}
In this case, the above code would return that configuration for ANY table within the ``sf-trees`` database.
The plugin configuration could also be set at the top level of ``metadata.json``::
{
"title": "This is the top-level title in metadata.json",
"plugins": {
"datasette-cluster-map": {
"latitude_column": "xlat",
"longitude_column": "xlng"
}
}
}
Now that ``datasette-cluster-map`` plugin configuration will apply to every table in every database.