An open source multi-tool for exploring and publishing data https://datasette.io
  • Python 88.4%
  • HTML 7.5%
  • JavaScript 2.4%
  • CSS 1.2%
  • Shell 0.3%
  • Other 0.1%
Find a file
Simon Willison 400fa08e4c
Add keyset pagination to allowed_resources() (#2562)
* Add keyset pagination to allowed_resources()

This replaces the unbounded list return with PaginatedResources,
which supports efficient keyset pagination for handling thousands
of resources.

Closes #2560

Changes:
- allowed_resources() now returns PaginatedResources instead of list
- Added limit (1-1000, default 100) and next (keyset token) parameters
- Added include_reasons parameter (replaces allowed_resources_with_reasons)
- Removed allowed_resources_with_reasons() method entirely
- PaginatedResources.all() async generator for automatic pagination
- Uses tilde-encoding for tokens (matching table pagination)
- Updated all callers to use .resources accessor
- Updated documentation with new API and examples

The PaginatedResources object has:
- resources: List of Resource objects for current page
- next: Token for next page (None if no more results)
- all(): Async generator that yields all resources across pages

Example usage:
    page = await ds.allowed_resources("view-table", actor, limit=100)
    for table in page.resources:
        print(table.child)

    # Iterate all pages automatically
    async for table in page.all():
        print(table.child)

🤖 Generated with [Claude Code](https://claude.com/claude-code)

Co-Authored-By: Claude <noreply@anthropic.com>
2025-10-31 14:50:46 -07:00
.github Ported setup.py to pyproject.toml (#2555) 2025-10-30 10:41:41 -07:00
datasette Add keyset pagination to allowed_resources() (#2562) 2025-10-31 14:50:46 -07:00
demos Fixed an unnecessary f-string 2024-02-04 10:15:21 -08:00
docs Add keyset pagination to allowed_resources() (#2562) 2025-10-31 14:50:46 -07:00
tests Add keyset pagination to allowed_resources() (#2562) 2025-10-31 14:50:46 -07:00
.coveragerc Configure code coverage, refs #841, #843 2020-06-13 13:48:23 -07:00
.dockerignore Build Dockerfile with SpatiaLite 5, refs #1249 2021-03-26 21:27:40 -07:00
.git-blame-ignore-revs Ignore Black commits in git blame, refs #1716 2022-04-22 14:58:46 -07:00
.gitattributes New explicit versioning mechanism 2020-10-28 20:38:15 -07:00
.gitignore Ported setup.py to pyproject.toml (#2555) 2025-10-30 10:41:41 -07:00
.isort.cfg Used isort to re-order my imports 2018-05-14 00:04:23 -03:00
.prettierrc .prettierrc, refs #1166 2020-12-31 13:25:44 -08:00
.readthedocs.yaml Build docs with 3.11 on ReadTheDocs 2023-05-07 11:44:27 -07:00
CODE_OF_CONDUCT.md Add code of conduct again 2022-03-15 08:38:42 -07:00
codecov.yml codecov should not be blocking 2020-07-02 21:29:32 -07:00
Dockerfile Upgrade Docker images to Python 3.11, closes #1853 2022-10-25 12:04:53 -07:00
Justfile Ported setup.py to pyproject.toml (#2555) 2025-10-30 10:41:41 -07:00
LICENSE Initial commit 2017-10-22 17:39:03 -07:00
MANIFEST.in Include LICENSE in sdist (#1043) 2020-10-23 13:54:34 -07:00
package-lock.json Reformat JavaScript files with Prettier (#2517) 2025-10-20 16:41:09 -07:00
package.json Reformat JavaScript files with Prettier (#2517) 2025-10-20 16:41:09 -07:00
pyproject.toml Ported setup.py to pyproject.toml (#2555) 2025-10-30 10:41:41 -07:00
pytest.ini New allowed_resources_sql plugin hook and debug tools (#2505) 2025-10-08 14:27:51 -07:00
README.md Replace Glitch with Codespaces, closes #2488 2025-05-28 19:17:22 -07:00
ruff.toml Use ruff to upgrade Optional[x] to x | None 2025-10-26 10:50:29 -07:00
setup.cfg New explicit versioning mechanism 2020-10-28 20:38:15 -07:00
test-in-pyodide-with-shot-scraper.sh Introduce new /$DB/-/query endpoint, soft replaces /$DB?sql=... (#2363) 2024-07-15 10:33:51 -07:00

Datasette

PyPI Changelog Python 3.x Tests Documentation Status License docker: datasette discord

An open source multi-tool for exploring and publishing data

Datasette is a tool for exploring and publishing data. It helps people take data of any shape or size and publish that as an interactive, explorable website and accompanying API.

Datasette is aimed at data journalists, museum curators, archivists, local governments, scientists, researchers and anyone else who has data that they wish to share with the world.

Explore a demo, watch a video about the project or try it out on GitHub Codespaces.

Want to stay up-to-date with the project? Subscribe to the Datasette newsletter for tips, tricks and news on what's new in the Datasette ecosystem.

Installation

If you are on a Mac, Homebrew is the easiest way to install Datasette:

brew install datasette

You can also install it using pip or pipx:

pip install datasette

Datasette requires Python 3.8 or higher. We also have detailed installation instructions covering other options such as Docker.

Basic usage

datasette serve path/to/database.db

This will start a web server on port 8001 - visit http://localhost:8001/ to access the web interface.

serve is the default subcommand, you can omit it if you like.

Use Chrome on OS X? You can run datasette against your browser history like so:

 datasette ~/Library/Application\ Support/Google/Chrome/Default/History --nolock

Now visiting http://localhost:8001/History/downloads will show you a web interface to browse your downloads data:

Downloads table rendered by datasette

metadata.json

If you want to include licensing and source information in the generated datasette website you can do so using a JSON file that looks something like this:

{
    "title": "Five Thirty Eight",
    "license": "CC Attribution 4.0 License",
    "license_url": "http://creativecommons.org/licenses/by/4.0/",
    "source": "fivethirtyeight/data on GitHub",
    "source_url": "https://github.com/fivethirtyeight/data"
}

Save this in metadata.json and run Datasette like so:

datasette serve fivethirtyeight.db -m metadata.json

The license and source information will be displayed on the index page and in the footer. They will also be included in the JSON produced by the API.

datasette publish

If you have Heroku or Google Cloud Run configured, Datasette can deploy one or more SQLite databases to the internet with a single command:

datasette publish heroku database.db

Or:

datasette publish cloudrun database.db

This will create a docker image containing both the datasette application and the specified SQLite database files. It will then deploy that image to Heroku or Cloud Run and give you a URL to access the resulting website and API.

See Publishing data in the documentation for more details.

Datasette Lite

Datasette Lite is Datasette packaged using WebAssembly so that it runs entirely in your browser, no Python web application server required. Read more about that in the Datasette Lite documentation.